Structural insight into Ca2+ specificity in tetrameric cation channels.

نویسندگان

  • Amer Alam
  • Ning Shi
  • Youxing Jiang
چکیده

Apparent blockage of monovalent cation currents by the permeating blocker Ca(2+) is a physiologically essential phenomenon relevant to cyclic nucleotide-gated (CNG) channels. The recently determined crystal structure of a bacterial homolog of CNG channel pores, the NaK channel, revealed a Ca(2+) binding site at the extracellular entrance to the selectivity filter. This site is not formed by the side-chain carboxylate groups from the conserved acidic residue, Asp-66 in NaK, conventionally thought to directly chelate Ca(2+) in CNG channels, but rather by the backbone carbonyl groups of residue Gly-67. Here we present a detailed structural analysis of the NaK channel with a focus on Ca(2+) permeability and blockage. Our results confirm that the Asp-66 residue, although not involved in direct chelation of Ca(2+), plays an essential role in external Ca(2+) binding. Furthermore, we give evidence for the presence of a second Ca(2+) binding site within the NaK selectivity filter where monovalent cations also bind, providing a structural basis for Ca(2+) permeation through the NaK pore. Compared with other Ca(2+)-binding proteins, both sites in NaK present a novel mode of Ca(2+) chelation, using only backbone carbonyl oxygen atoms from residues in the selectivity filter. The external site is under indirect control by an acidic residue (Asp-66), making it Ca(2+)-specific. These findings give us a glimpse of the possible underlying mechanisms allowing Ca(2+) to act both as a permeating ion and blocker of CNG channels and raise the possibility of a similar chemistry governing Ca(2+) chelation in Ca(2+) channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

X-ray crystal structure of a TRPM assembly domain reveals an antiparallel four-stranded coiled-coil.

Transient receptor potential (TRP) channels comprise a large family of tetrameric cation-selective ion channels that respond to diverse forms of sensory input. Earlier studies showed that members of the TRPM subclass possess a self-assembling tetrameric C-terminal cytoplasmic coiled-coil domain that underlies channel assembly and trafficking. Here, we present the high-resolution crystal structu...

متن کامل

Gene Expression Profile of CatSper3 and CatSper4 during Postnatal Development of Mouse Testis

Channel activities, particularly those of calcium channels, have vital roles in the process of sperm maturation, motility and sperm-egg interaction. A group of the recently discovered ion channels associated with these processes is four novel channel-like proteins known as CatSper (cation channel sperm) gene family. CatSper1 and CatSper2 show sperm specific expression patterns. However, neither...

متن کامل

Cation Selectivity in Biological Cation Channels Using Experimental Structural Information and Statistical Mechanical Simulation

Cation selective channels constitute the gate for ion currents through the cell membrane. Here we present an improved statistical mechanical model based on atomistic structural information, cation hydration state and without tuned parameters that reproduces the selectivity of biological Na+ and Ca2+ ion channels. The importance of the inclusion of step-wise cation hydration in these results con...

متن کامل

A molecular study on the endoplasmic reticulum potassium channels in hepatocytes

Introduction: It has recently been suggested that the KATP channel subunits Kir6.x and BKCa channels exist in the endoplasmic reticulum of cardiomyocytes and neurons. Our previous studies showed the electrophysiological behavior of cation channels in the rough endoplasmic reticulum (RER) of rat hepatocytes. Therefore, we hypothesized that KATP channels and Ca2+-activated potassium channels m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 39  شماره 

صفحات  -

تاریخ انتشار 2007